Publication

The N-Terminal Domain of Bfa1 Coordinates Mitotic Exit Independent of GAP Activity in Saccharomyces cerevisiae

Yan Li and Kiwon Song.

Abstract
The spindle position checkpoint (SPOC) of budding yeast delays mitotic exit in response to misaligned spindles to ensure cell survival and the maintenance of genomic stability. The GTPase-activating protein (GAP) complex Bfa1–Bub2, a key SPOC component, inhibits the GTPase Tem1 to induce mitotic arrest in response to DNA and spindle damage, as well as spindle misorientation. However, previous results strongly suggest that Bfa1 exerts a GAP-independent function in blocking mitotic exit in response to misaligned spindles. Thus, the molecular mechanism by which Bfa1 controls mitotic exit in response to misaligned spindles remains unclear. Here, we observed that overexpression of the N-terminal domain of Bfa1 (Bfa1-D16), which lacks GAP activity and cannot localize to the spindle pole body (SPB), induced cell cycle arrest along with hyper-elongation of astral microtubules (aMTs) as Bfa1 overexpression in Δbub2. We found that Δbub2 cells overexpressing Bfa1 or Bfa1-D16 inhibited activation of Mob1, which is responsible for mitotic exit. In anaphase-arrested cells, Bfa1-D16 overexpression inhibited Tem1 binding to the SPB as well as Bfa1 overexpression. Additionally, endogenous levels of Bfa1-D16 showed minor SPOC activity that was not regulated by Kin4. These results suggested that Bfa1-D16 may block mitotic exit through inhibiting Tem1 activity outside of SPBs. Alternatively, Bfa1-D16 dispersed out of SPBs may block Tem1 binding to SPBs by physically interacting with Tem1 as previously reported. Moreover, we observed hyper-elongated aMTs in tem1-3, cdc15-2, and dbf2-2 mutants that induce anaphase arrest and cannot undergo mitotic exit at restrictive temperatures, suggesting that aMT dynamics are closely related to the regulation of mitotic exit. Altogether, these observations suggest that Bfa1 can control the SPOC independent of its GAP activity and SPB localization.

The Multivalent Polyampholyte Domain of Nst1, a P-Body-Associated Saccharomyces cerevisiae Protein, Provides a Platform for Interacting with P-Body Components

Choi, Yoon-Jeong, et al.

Abstract
The condensation of nuclear promyelocytic leukemia bodies, cytoplasmic P-granules, P-bodies (PBs), and stress granules is reversible and dynamic via liquid–liquid phase separation. Although each condensate comprises hundreds of proteins with promiscuous interactions, a few key scaffold proteins are required. Essential scaffold domain sequence elements, such as poly-Q, low-complexity regions, oligomerizing domains, and RNA-binding domains, have been evaluated to understand their roles in biomolecular condensation processes. However, the underlying mechanisms remain unclear. We analyzed Nst1, a PB-associated protein that can intrinsically induce PB component condensations when overexpressed. Various Nst1 domain deletion mutants with unique sequence distributions, including intrinsically disordered regions (IDRs) and aggregation-prone regions, were constructed based on structural predictions. The overexpression of Nst1 deletion mutants lacking the aggregation-prone domain (APD) significantly inhibited self-condensation, implicating APD as an oligomerizing domain promoting self-condensation. Remarkably, cells overexpressing the Nst1 deletion mutant of the polyampholyte domain (PD) in the IDR region (Nst1∆PD) rarely accumulate endogenous enhanced green fluorescent protein (EGFP)-tagged Dcp2. However, Nst1∆PD formed self-condensates, suggesting that Nst1 requires PD to interact with Dcp2, regardless of its self-condensation. In Nst1∆PD-overexpressing cells treated with cycloheximide (CHX), Dcp2, Xrn1, Dhh1, and Edc3 had significantly diminished condensation compared to those in CHX-treated Nst1-overexpressing cells. These observations suggest that the PD of the IDR in Nst1 functions as a hub domain interacting with other PB components.

Nst1, Densely Associated to P-Body in the Post-Exponential Phases of Saccharomyces cerevisiae, Shows an Intrinsic Potential of Producing Liquid-Like Condensates of P-Body Components in Cells

Yoon-Jeong Choi and Kiwon Song.

Abstract
Membrane-less biomolecular compartmentalization is a core phenomenon involved in many physiological activities that occur ubiquitously in cells. Condensates, such as promyelocytic leukemia (PML) bodies, stress granules, and P-bodies (PBs), have been investigated to understand the process of membrane-less cellular compartmentalization. In budding yeast, PBs dispersed in the cytoplasm of exponentially growing cells rapidly accumulate in response to various stresses such as osmotic stress, glucose deficiency, and heat stress. In addition, cells start to accumulate PBs chronically in post-exponential phases. Specific protein–protein interactions are involved in accelerating PB accumulation in each circumstance, and discovering the regulatory mechanism for each is the key to understanding cellular condensation. Here, we demonstrate that Nst1 of budding yeast Saccharomyces cerevisiae is far more densely associated with PBs in post-exponentially growing phases from the diauxic shift to the stationary phase than during glucose deprivation of exponentially growing cells, while the PB marker Dcp2 exhibits a similar degree of condensation under these conditions. Similar to Edc3, ectopic Nst1 overexpression induces self-condensation and the condensation of other PB components, such as Dcp2 and Dhh1, which exhibit liquid-like properties. Altogether, these results suggest that Nst1 has the intrinsic potential for self-condensation and the condensation of other PB components, specifically in post-exponential phases.

Cold Atmospheric Pressure Plasma-Activated Medium Induces Selective Cell Death in Human Hepatocellular Carcinoma Cells Independently of Singlet Oxygen, Hydrogen Peroxide, Nitric Oxide and Nitrite/Nitrate

Li et al.

Abstract
Cold atmospheric pressure plasma (CAP) and plasma-activated medium (PAM) induce cell death in diverse cancer cells and may function as powerful anti-cancer agents. The main components responsible for the selective anti-cancer effects of CAP and PAM remain elusive. CAP or PAM induces selective cell death in hepatocellular carcinoma cell lines Hep3B and Huh7 containing populations with cancer stem cell markers. Here, we investigated the major component (s) of CAP and PAM for mediating the selective anti-proliferative effect on Hep3B and Huh7 cells. The anti-proliferative effect of CAP was mediated through the medium; however, the reactive oxygen species scavenger N-acetyl cysteine did not suppress PAM-induced cell death. Neither high concentrations of nitrite or nitrite/nitrate nor a low concentration of H 2 O 2 present in the PAM containing sodium pyruvate affected the viability of Hep3B and Huh7 cells. Inhibitors of singlet oxygen, superoxide anions, and nitric oxide retained the capacity of PAM to induce anti-cancer effects. The anti-cancer effect was largely blocked in the PAM prepared by placing an aluminum metal mesh, but not a dielectric PVC mesh, between the plasma source and the medium. Hence, singlet oxygen, hydrogen peroxide, nitric oxide, and nitrite/nitrate are not the main factors responsible for PAM-mediated selective death in Hep3B and Huh7 cells. Other factors, such as charged particles including various ions in CAP and PAM, may induce selective anti-cancer effects in certain cancer cells.

Selective Anti-Cancer Effects of Plasma-Activated Medium and Its High Efficacy with Cisplatin on Hepatocellular Carcinoma with Cancer Stem Cell Characteristics

Abstract
Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.

Continuous Exposure to 1.7 GHz LTE Electromagnetic Fields Increases Intracellular Reactive Oxygen Species to Decrease Human Cell Proliferation and Induce Senescence

Jisu Choi et al.

Abstract
Due to the rapid development of mobile phone technology, we are continuously exposed to 1.7 GHz LTE radio frequency electromagnetic fields (RF-EMFs), but their biological effects have not been clarified. Here, we investigated the non-thermal cellular effects of these RF-EMFs on human cells, including human adipose tissue-derived stem cells (ASCs), Huh7 and Hep3B liver cancer stem cells (CSCs), HeLa and SH-SY5Y cancer cells, and normal fibroblast IMR-90 cells. When continuously exposed to 1.7 GHz LTE RF-EMF for 72 h at 1 and 2 SAR, cell proliferation was consistently decreased in all the human cells. The anti-proliferative effect was higher at 2 SAR than 1 SAR and was less severe in ASCs. The exposure to RF-EMF for 72 h at 1 and 2 SAR did not induce DNA double strand breaks or apoptotic cell death, but did trigger a slight delay in the G1 to S cell cycle transition. Cell senescence was also clearly observed in ASC and Huh7 cells exposed to RF-EMF at 2 SAR for 72 h. Intracellular ROS increased in these cells and the treatment with an ROS scavenger recapitulated the anti-proliferative effect of RF-EMF. These observations strongly suggest that 1.7 GHz LTE RF-EMF decrease proliferation and increase senescence by increasing intracellular ROS in human cells.

Non-thermal atmospheric pressure plasma induces epigenetic modifications that activate the expression of various cytokines and growth factors in human mesoderm-derived stem cells

Jeongyeon Park

Abstract
Non-thermal atmospheric pressure plasma (NTAPP) has been reported to induce wound healing, activation of immune cells, and proliferation of mesoderm-derived adult stem cells in human. However, the mechanism by which NTAPP activates these physiological effects is poorly understood. Here, we examined whole genome expression profiles of adipose tissue-derived stem cells (ASCs), the proliferation of which is induced by NTAPP. NTAPP upregulated the expression of genes for cytokine and growth factor, but downregulated genes in apoptotic pathways. When ASCs were treated with NTAPP in the presence of a nitric oxide (NO) scavenger, the expression of various cytokines and growth factors decreased, suggesting that NO is primarily responsible for the enhanced cytokine and growth factor expression induced by NTAPP. Increased histone deacetyl transferase 1 (HDAC1) and decreased acetylated histone 3 were detected in NTAPP-treated ASCs. Similarly, ASCs pre-treated with HDAC, DNA methylation, or histone methylation inhibitors had reduced expression of cytokines and growth factors after NTAPP treatment. Taken together, these results strongly suggest that NTAPP induces epigenetic modifications that activate the expression of cytokines and growth factors, explaining how NTAPP acts as an efficient tool in regenerative medicine to stimulate stem cell proliferation, to activate immune cells, and to recover wounds.

Cold Atmospheric Pressure Plasma as a Tool to Control the Proliferation of Various Mammalian Cells Including Human Mesenchymal Stem Cells for Regenerative Medicine

Jeongyeon Park, Kiwon Song

ABSTRACT
Cell proliferation is one of the most critical processes for development, tissue regeneration, and wound healing, and is tightly linked with cell differentiation and migration. Also, the regulation of cell proliferation is essential for appropriate tissue regeneration and improved culture system, which requires an effective control tool for cell proliferation both in vivo and in vitro. Recently, cold atmospheric pressure plasma (CAP) has been shown to have considerable effects on cell proliferation that have been attributed to the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Many studies on CAP application suggest that CAP can be developed as an efficient tool to activate proliferation in vitro for personalized cell therapies and in vivo for wound healing. In this review, we discuss how CAP has been applied to control proliferation in various mammalian cells and its molecular mechanisms for biomedical applications. In our study, we demonstrated that nitric oxide (NO) from CAP is the major factor for activating the proliferation of human mesenchymal stem cells. When exposed to CAP, many different types of human cells displayed highly increased expression of cytokines and growth factors both in vitro and in vivo, strongly suggesting that common mechanisms and components are involved in CAP-induced cell proliferation. Furthermore, CAP induced epigenetic modifications in human mesenchymal stem cells to boost the expression of cytokines and growth factors, thereby promoting cell proliferation. Further studies are needed to verify that NO of the CAP and epigenetic modifications are the common mechanism of action of CAP in culture and in wounded tissues. In addition, the molecular mechanism of the epigenetic modifications induced by CAP treatment should be investigated to develop CAP as an applicable tool for regenerative medicine and wound healing. 

DOI: 10.1615/PlasmaMed.2021036029

Non-thermal atmospheric pressure plasma is an excellent tool to activate proliferation in various mesoderm-derived human adult stem cells

Park et al.

Abstract
Adult stem cells are capable of self-renewal and differentiation into specific cell types in tissues and have high potential for stem cell therapy. Mesenchymal and hematopoietic stem cells are easily attainable from the human body and have become applicable tools for adult stem cell therapy. However, there are still technical barriers for the application of mesenchymal and hematopoietic stem cells for therapy, such as the small number of cell populations, high risk of contamination, and loss of their stemness properties in vitro. In our previous study, we showed that non-thermal atmospheric pressure plasma (NTAPP) promoted the proliferation of adipose tissue-derived stem cells (ASCs) by 1.6-fold on average, while maintaining their stemness. Here, we examined the feasibility of NTAPP as a tool to activate the proliferation of mesenchymal and hematopoietic stem cells in vitro without affecting their stem cell characteristics. NTAPP increased the proliferation of bone marrow-derived stem cells (BM-MSCs) and hematopoietic stem cells (HSCs) by 1.8- and 2-fold, respectively, when compared to that of untreated cells. As observed in ASCs, NTAPP exposure also activated the expression of stem cell-specific surface markers, CD44 and CD105, by 5-fold in BM-MSCs, when compared to that in unexposed control cells in a low glucose medium with a low concentration of basic fibroblast growth factor (b-FGF). In addition, NTAPP exposure highly augmented the mRNA expression of well-known pluripotent genes for stemness, such as Oct4, Sox2, and Nanog in ASCs and BM-MSCs when compared to that in unexposed control cells. When cell cycle progression was examined, the G1-S shift was accelerated, and expression of PCNA was increased in NTAPP-exposed ASCs when compared to that in untreated control cells, suggesting that NTAPP activated G1-S transition. Taken together, these results demonstrated that NTAPP activated the proliferation of various mesodermal-derived human adu

A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels

Song et al.

Abstract
Previously, we showed that exposure of human normal and cancer cells to a 6 mT, 60 Hz gradient electromagnetic field (EMF) induced genotoxicity. Here, we investigated the cellular effects of a uniform EMF. Single or repetitive exposure to a 6 mT, 60 Hz uniform EMF neither induced DNA damage nor affected cell viability in HeLa and primary IMR-90 fibroblasts. However, continuous exposure of these cells to an EMF promoted cell proliferation. Cell viability increased 24.4% for HeLa and 15.2% for IMR-90 cells after a total 168 h exposure by subculture. This increase in cell proliferation was directly correlated with EMF strength and exposure time. When further incubated without EMF, cell proliferation slowed down to that of unexposed cells, suggesting that the proliferative effect is reversible. The expression of cell cycle markers increased in cells continuously exposed to an EMF as expected, but the distribution of cells in each stage of the cell cycle did not change. Notably, intracellular reactive oxygen species levels decreased and phosphorylation of Akt and Erk1/2 increased in cells exposed to an EMF, suggesting that reduced levels of intracellular reactive oxygen species play a role in increased proliferation. These results demonstrate that EMF uniformity at an extremely low frequency (ELF) is an important factor in the cellular effects of ELF-EMF.

Actin Dysfunction Induces Cell Cycle Delay at G2/M with Sustained ERK and RSK Activation in IMR-90 Normal Human Fibroblasts

D Shrestha, D Choi, K Song

Abstract
The actin cytoskeleton plays a key role in the entry of mitosis as well as in cytokinesis. In a previous study, we showed that actin disruption delays mitotic entry at G2/M by sustained activation of extracellular signal-related kinase 1/2 (ERK1/2) in primary cells but not in transformed cancer cell lines. Here, we examined the mechanism of cell cycle delay at G2/M by actin dysfunction in IMR-90 normal human fibroblasts. We observed that de-polymerization of actin with cytochalasin D (CD) constitutively activated ribosomal S6 kinase (RSK) and induced inhibitory phosphorylation of Cdc2 (Tyr 15) in IMR-90 cells. In the presence of an actin defect in IMR-90 cells, activating phosphorylation of Wee1 kinase (Ser 642) and inhibitory phosphorylation of Cdc25C (Ser 216) was also maintained. However, when kinase-dead RSK (DN-RSK) was over-expressed, we observed sustained activation of ERK1/2, but no delay in the G2/M transition, demonstrating that RSK functions downstream of ERK in cell cycle delay by actin dysfunction. In DN-RSK overexpressing IMR-90 cells treated with CD, phosphorylation of Cdc25C (Ser 216) was blocked and phosphorylation of Cdc2 (Tyr 15) was decreased, but the phosphorylation of Wee1 (Ser 642) was maintained, demonstrating that RSK directly controls phosphorylation of Cdc25C (Ser 216), but not the activity of Wee1. These results strongly suggest that actin dysfunction in primary cells activates ERK1/2 to inhibit Cdc2, delaying the cell cycle at G2/M by activating downstream RSK, which phosphorylates and blocks Cdc25C, and by directly activating Wee1.

Stathmin/Op18 depletion induces genomic instability and leads to premature senescence in human normal fibroblasts

Deepmala Shrestha, Namil Kim, Kiwon Song

Abstract
Stathmin/oncoprotein18 regulates microtubule dynamics and participates in mitotic entry and exit. We isolated stathmin as a physically interacting partner of KIFC1, a minus-end-directed kinesin functioning in bipolar spindle formation and maintenance. We found that stathmin depletion leads to multipolar spindle formation in IMR-90 normal human fibroblasts. Stathmin-depleted IMR-90 cells showed early mitotic delay but managed to undergo chromosome segregation by forming multiple poles or pseudo-bipoles. Consistent with these observations, lagging chromosomes, and micronuclei were elevated in stathmin-depleted IMR-90 cells, demonstrating that stathmin is essential for maintaining genomic stability during mitosis in human cells. Genomic instability induced by stathmin depletion led to premature senescence without any indication of cell death in normal IMR-90 cells. Double knock-down of both stathmin and p53 also did not induce cell death in IMR-90 cells, while the stathmin knock-down triggered apoptosis in p53-proficient human lung adenocarcinoma cells. Our results suggest that stathmin is essential in bipolar spindle formation to maintain genomic stability during mitosis, and the depletion of stathmin prevents the initiation of chromosome instability by inducing senescence in human normal fibroblasts.


J Cell Biochem. 2017;1?15.

Effects of 1950 MHz radiofrequency electromagnetic fields on A?processing in human neuroblastoma and mouse hippocampal neuronal cells

Abstract
Alzheimer's disease (AD) is a neurodegenerative disease leading to progressive loss of memory and other cognitive functions. One of the well-known pathological markers of AD is the accumulation of amyloid-beta protein (A?, and its plaques, in the brain. Recent studies using Tg-5XFAD mice as a model of AD have reported that exposure to radiofrequency electromagnetic fields (RF-EMF) from cellular phones reduced A?plaques in the brain and showed beneficial effects on AD. In this study, we examined whether exposure to 1950 MHz RF-EMF affects A?processing in neural cells. We exposed HT22 mouse hippocampal neuronal cells and SH-SY5Y human neuroblastoma cells to RF-EMF (SAR 6 W/kg) for 2 h per day for 3 days, and analyzed the mRNA and protein expression of the key genes related to A?processing. When exposed to RF-EMF, mRNA levels of APP, BACE1, ADAM10 and PSEN1 were decreased in HT22, but the mRNA level of APP was not changed in SH-SY5Y cells. The protein expression of APP and BACE1, as well as the secreted A?peptide, was not significantly different between RF-EMF?exposed 7w-PSML, HT22 and SH-SY5Y cells and the unexposed controls. These observations suggest that RF-EMF exposure may not have a significant physiological effect on A?processing of neural cells in the short term. However, considering that we only exposed HT22 and SH-SY5Y cells to RF-EMF for 2 h per day for 3 days, we cannot exclude the possibility that 1950 MHz RF-EMF induces physiological change in A?processing with long-term and continuous exposure.


Journal of Radiation Research, 2017, pp. 1?9

Non-Thermal Atmospheric Pressure Plasma Efficiently Promotes the Proliferation of Adipose TissueDerived Stem Cells by Activating NO-Response Pathways

Abstract
Non-thermal atmospheric pressure plasma (NTAPP) is defined as a partially ionized gas with electrically charged particles at atmospheric pressure. Our study showed that exposure to NTAPP generated in a helium-based dielectric barrier discharge (DBD) device increased the proliferation of adipose tissuederived stem cells (ASCs) by 1.57-fold on an average, compared with untreated cells at 72 h after initial NTAPP exposure. NTAPP-exposed ASCs maintained their stemness, capability to differentiate into adipocytes but did not show cellular senescence. Therefore, we suggested that NTAPP can be used to increase the proliferation of ASCs without affecting their stem cell properties. When ASCs were exposed to NTAPP in the presence of a nitric oxide (NO) scavenger, the proliferation-enhancing effect of NTAPP was not obvious. Meanwhile, the proliferation of NTAPP-exposed ASCs was not much changed in the presence of scavengers for reactive oxygen species (ROS). Also, Akt, ERK1/2, and NF-?B were activated in ASCs after NTAPP exposure. These results demonstrated that NO rather than ROS is responsible for the enhanced proliferation of ASCs following NTAPP exposure. Taken together, this study suggests that NTAPP would be an efficient tool for use in the medical application of ASCs both in vitro and in vivo.


Scientific RepoRts | 6:39298 | DOI: 10.1038/srep39298

Watch out for your TRP1 marker: the effect of TRP1 gene on the growth at high and low temperatures in budding yeast


Gang Leng and Kiwon Song

Abstract
TRP1 is a frequently used auxotrophic marker for genetic modifications and selections in trp- budding yeast strains,
including the commonly used wild-type strain W303a. However, we found that introduction of the TRP1 gene into a trp- strain significantly affected vegetative growth at low and high temperatures. Therefore, caution should be needed when working in a trp- background strain and using the TRP1 marker to study stress response phenotypes, particularly when analyzing temperature sensitivities.

FEMS Microbiology Letters, 2016, Vol. 363, No. 10

Direct interaction of Ste11 and Mkk1/2 through Nst1 integrates high-osmolarity glycerol and pheromone pathways to the cell wall integrity MAPK pathway


Gang Leng and Kiwon Song

Abstract
Coordination and cross talks of MAPK pathways are critical for signaling efficiency, but their mechanisms are not well understood. Slt2, the MAP kinase of cell wall integrity pathway (CWI), is activated by heat stress even in the absence of upstream components of this pathway, suggesting a supplementary input for Slt2 activation. Here, we identify a new interaction of Ste11 and Mkk1, mediated by Nst1 that connects the high-osmolarity glycerol and pheromone pathways directly to CWI pathway in response to heat and pheromone. We suggest that Ser407 and Thr411 Mkk1 activated by these MAPK pathways.


FEBS Letters 590 (2016) 148?160